The human brain is incredible.

Despite consuming the equivalent of just two bananas per day, this doesn't stop it from executing unconscionably complex tasks with impressive efficiency. But a team of researchers has designed a way to build a prototype of an artificial neuron made of unbelievably thin graphene slits housing a single layer of water molecules, according to a new study published in the journal Science.

And, instead of electrons, this artificial neuron uses ions.

Just like your brain.

The brain's ultra-high efficiency is contingent upon a base unit we know and love as the neuron, which consists of a neuron with nanometric pores called ion channels. These channels alternatively close and open depending on the stimuli, but the ion flows resulting from this process generate an electric current, one that emits action potentials, which are the crucial signals that let neurons communicate betwixt one another. Artificial intelligence (AI) can do it, too. But AI takes a lot more energy — https://interestingengineering.com/will-ai-ever-be-conscious">tens of thousands of times more, to be precise. This is why the modern challenge for researchers in the field is to design and build electronic systems that rival the energy efficiency of the human brain. 

 

The study of nanofluidics is relevant because it studies how fluids behave in channels of less than 100 nanometers wide. The new study showed how an electric field could assemble the single layer of water molecules into elongated clusters, which develop a key property called the memristor effect: When clusters retain a portion of the stimuli they've received in the recent past. Much like the human brain, the researcher's design saw graphene slits reproduce the ion channels, in addition to ion flows, and clusters. Additionally, with the help of digital and theoretical tools, scientists discovered a way to assemble these special clusters so they'd reproduce the physical mechanism of emitting action potentials.

To read more, click here.