Using computers to study polymers has always been a major challenge for scientific computation, especially for long and densely packed biomolecules, like DNA. New perspectives are now opening up through quantum computing. Scientists have now recast the basic models of polymer models as optimization problems that can be efficiently solved with quantum computers. This novel approach has made it possible to harness the considerable potential of these machines in a hitherto unexplored context.

The study, published in the Physical Review Letters journal, has involved Cristian Micheletti from SISSA, and Philipp Hauke and Pietro Faccioli from the University of Trento.

Many of the paradigms of scientific computing, from Monte Carlo techniques to simulated annealing—the authors explain—were developed, at least in part, to study the properties of polymers, including biological ones such as protein and DNA. On the one hand, the advance of quantum computers opens new scenarios for scientific computing in general. At the same time, it requires the development of new models apt for taking full advantage of this great potential. In particular, quantum computers excel at solving tasks. These problems typically involve finding the optimal combination of system variables according to a preassigned scoring system.

Considering this, the authors have recast the basic models by establishing a correspondence between each possible polymer configuration and the solutions of a suitable optimization problem.

"Typically, are directly modeled as a sequence of points in three-dimensional space. In classic simulations, this chain is then animated via progressive deformations, mimicking the dynamics of the polymer in nature," explain the authors. Now that we are entering the era, it becomes natural to study polymers with these innovative techniques. However, the descriptions based on points in 3D space cannot be easily used with quantum computers. Finding ways to circumvent conventional polymer descriptions is thus a challenge that could open new perspectives.

To read more, click here.