Able to rapidly and simultaneously capture countless signals, skin is one of the most powerful “electronic” systems in the world. With 3000 sensory cells per square centimeter, it provides us with data about temperature, humidity, and pressure in our environment. It is also stretchable, biodegradable, self-healing, and autonomous—it requires no direct input from the person to carry out its tasks.

These enviable properties have made creating electronic “skin” a goal of many scientists, including Zhenan Bao of Stanford University, who has been working on the problem for over two decades. At the recent ACS Fall Meeting, Bao presented her latest work on this topic: a method for fabricating high-density arrays of flexible transistors. The method can assemble 42,000 transistors per square centimeter of material, a density over 2 orders of magnitude higher than that achievable through other techniques.

To read more, click here.