Graphene nanoribbons (GNRs) are narrow and long strips of graphene with widths below 100 nm. GNRs that have smooth edges, a sizable bandgap and high charge carrier mobility could be highly valuable for a wide range of electronic and optoelectronic applications. So far, however, engineers have not yet introduced a method to prepare these useful components on a large scale.
Researchers at Shanghai Jiao Tong University, Stanford University, and other institutes in the US and China, have recently devised a new strategy to create GNRs with smooth edges that are below 10 nm in width. This method, introduced in a paper published in Nature Electronics, is based on the use of squashed carbon nanotubes (CNTs), tubes made of carbon that typically have diameters in the nanometer scale.
To read more, click here.