Clover plants grown in Mars-like soils experience significantly more growth when inoculated with symbiotic nitrogen-fixing bacteria than when left uninoculated. Franklin Harris of Colorado State University, U.S., and colleagues present these findings in the open-access journal PLOS ONE on September 29, 2021.

As Earth's population grows, researchers are studying the possibility of farming Martian soils, or "regolith." However, regolith is lacking in some essential plant nutrients, including certain nitrogen-containing molecules that plants require to live. Therefore, agriculture on Mars will require strategies to increase the amount of these nitrogen compounds in regolith.

Harris and colleagues hypothesize that bacteria could play a cost-effective role in making Martian soils more fertile. On Earth, bacteria in soils help convert or "fix" atmospheric nitrogen into the molecules that plants need. Some of these microbes have symbiotic relationships with plants, in which they fix nitrogen within nodules found on plant roots.

To read more, click here.