Countless astrophysicists and astronomers are actively searching for unobserved celestial bodies in the universe, as detecting these bodies could improve our understanding of space and help to address unanswered astrophysical questions. Among these elusive objects are exoplanets, planets that orbit a star other than the sun, thus outside of the solar system.

One crucial challenge impeding the detection of exoplanets is that with existing methods, it is hard to see a faint emissions of a secondary source that is in the proximity of a much brighter source. This significantly limits the use of direct imaging techniques in exoplanet searches.

Researchers at University of Sheffield in the United Kingdom and Macquarie University in Australia have recently showed that it might be possible to reduce errors in detecting the presence of a weak secondary source during exoplanet searches, particularly in instances where two sources have small angular separations. Their paper, published in Physical Review Letters, specifically suggests that these errors could be reduced using quantum state discrimination and quantum imaging methods.

To read more, click here.