Scientists have known for a long time that magnetism is created by the spins of electrons lining up in certain ways. But about a decade ago, they discovered another astonishing layer of complexity in magnetic materials: Under the right conditions, these spins can form little vortexes or whirlpools that act like particles and move around independently of the atoms that spawned them.
The tiny whirlpools are called skyrmions, named after Tony Skyrme, the British physicist who predicted their existence in 1962. Their small size and sturdy nature – like knots that are hard to undo – have given rise to a rapidly expanding field devoted to understanding them better and exploiting their strange qualities.
“These objects represent some of the most sophisticated forms of magnetic order that we know about,” said Josh Turner, a staff scientist at the Department of Energy’s SLAC National Accelerator Laboratory and principal investigator with the Stanford Institute for Materials and Energy Sciences (SIMES) at SLAC.
“When skyrmions form,” he said, “it happens all at once, throughout the material. What’s even more interesting is that the skyrmions move around as if they are individual, independent particles. It’s like a dance where all the spins are communicating with each other and moving in unison to control the motion of the skyrmions, and meanwhile the atoms in the lattice below them just sit there.”
To read more, click here.