Video conferencing played a key role during the COVID-19 pandemic and is set to dominate many meetings in the future. To realize the true feeling of a face-to-face dialog, three dimensional video is required and yet the holographic technology is still missing. Researchers at the University of Stuttgart in Germany have now introduced a completely new approach to realize such dynamic holographic displays, based on electrically switchable plasmonic nanoantennas made from conductive metallic polymers. This key element provides the missing technology to enable holographic displays at video rate, which would enable virtual conferences with a "real-life" feeling. The paper detailing this work has been published in the journal Science on 29 October 2021.
Holograms creating impressive three-dimensional static images are well known. Dynamic holograms switchable at video rates using data from a high-speed internet connection are not possible until now. Previously, the limiting factor was the display resolution. Holographic images require a resolution of 50 000 dpi (pixels per inch) which is 100x more than the best smartphone displays. For such a resolution one has to reduce the pixel size to half a micrometer (one thousands of a millimeter). However, current liquid-crystal technology does not allow for such small pixels, being limited to a few micrometers pixel size.
Researchers at the University of Stuttgart have succeeded in breaking this fundamental barrier. In an interdisciplinary collaboration between Physics and Chemistry, they developed the idea to use electrically switchable plasmonic nanoantennas with dimensions of only a few hundred nanometers and made from conductive polymers.
To read more, click here.