Researchers from Aalto University and Tampere University have developed a new theoretical method to study dynamical phase transitions in strongly correlated quantum systems. Far-from-equilibrium dynamics of quantum many-body systems is one of the most active research areas in physics. The breakthrough work was recently published in Physical Review X.
Besides the long-standing fundamental interest, quantum dynamics of correlated systems is highly topical for the emerging quantum computers. The first likely breakthrough application for the new technology is in the realm of quantum many-body simulations that are notoriously difficult for traditional computers.
On the other hand, the first-generation quantum computers are still limited, and quantum dynamics can be employed in benchmarking their performance.
"Thus, comparing their predictions to those obtained by other means offers insights into their ability to simulate quantum systems. The new method to predict dynamical quantum phase transitions could be employed this way to study the performance of quantum computers," says Teemu Ojanen, Professor of computational physics at Tampere University.
To read more, click here.