The need to transition to clean energy is apparent, urgent, and inescapable. We must limit Earth’s rising temperature to within 1.5 C to avoid the worst effects of climate change — an especially daunting challenge in the face of the steadily increasing global demand for energy.

Part of the answer is using energy more efficiently. More than 72 percent of all energy produced worldwide is lost in the form of heat. For example, the engine in a car uses only about 30 percent of the gasoline it burns to move the car. The remainder is dissipated as heat.

Recovering even a tiny fraction of that lost energy would have a tremendous impact on climate change. Thermoelectric materials, which convert wasted heat into useful electricity, can help.

Until recently, the identification of these materials had been slow. My colleagues and I have used quantum computations — a computer-based modeling approach to predict materials’ properties — to speed up that process and identify more than 500 thermoelectric materials that could convert excess heat to electricity, and help improve energy efficiency.

To read more, click here.