Study reveals why some attempts to convert the greenhouse gas into fuel have failed, and offers possible solutions.

If researchers could find a way to chemically convert carbon dioxide into fuels or other products, they might make a major dent in greenhouse gas emissions. But many such processes that have seemed promising in the lab haven’t performed as expected in scaled-up formats that would be suitable for use with a power plant or other emissions sources.

Now, researchers at MIT have identified, quantified, and modeled a major reason for poor performance in such conversion systems. The culprit turns out to be a local depletion of the carbon dioxide gas right next to the electrodes being used to catalyze the conversion. The problem can be alleviated, the team found, by simply pulsing the current off and on at specific intervals, allowing time for the gas to build back up to the needed levels next to the electrode.

 The findings, which could spur progress on developing a variety of materials and designs for electrochemical carbon dioxide conversion systems, were published on January 11, 2022, in the journal Langmuir, in a paper by MIT postdoc Álvaro Moreno Soto, graduate student Jack Lake, and professor of mechanical engineering Kripa Varanasi.
 

To read more, click here.