The accepted science is that the more (almost) any given matter is heated, the more disrupted its internal order becomes. It melts, or evaporates. Now a model developed by researchers from the Hebrew University in Jerusalem and the University of Kentucky contradicts that notion, and may have implications for the development of superconductors that will help to create green energy

 Take an iceberg. Anywhere in the world, if the temperature rises beyond zero (Celsius), it will melt, no matter how big it is. Melting is not limited to ice. If it’s hot enough, the crystalline order of the material’s atoms is disrupted and the molecules start to move randomly, which means: it’s melting or evaporating. But this may not be universal. Possibly, not all substances melt in the heat.
 

For almost 50 years scientists have been trying to develop theoretical models describing substances that can be heated without changing the internal order of the atoms comprising them. So far the equations all led to the conclusion that every matter will ulitimately melt or evaporate. But researchers at the Hebrew University of Jerusalem and the University of Kentucky have created just such a model, which was published last week in the journal Physical Review Letters.

 “The article contains an impressive and thought-provoking achievement, because it demonstrates that there are models of matter that break symmetry even at high temperatures,” said Prof. Amos Yarom of the physics department of the Technion – Israel Institute of Technology, who was not involved in the study.
 

To read more, click here.