We have all seen crystals, whether a simple grain of salt or sugar, or an elaborate and beautiful amethyst. These crystals are made of atoms or molecules repeating in a symmetrical three-dimensional pattern called a lattice, in which atoms occupy specific points in space. By forming a periodic lattice, carbon atoms in a diamond, for example, break the symmetry of the space they sit in. Physicists call this “breaking symmetry.”
Scientists have recently discovered that a similar effect can be witnessed in time. Symmetry breaking, as the name suggests, can arise only where some sort of symmetry exists. In the time domain, a cyclically changing force or energy source naturally produces a temporal pattern.
Breaking of the symmetry occurs when a system driven by such a force faces a déjà vu moment, but not with the same period as that of the force. ‘Time crystals’ have in the past decade been pursued as a new phase of matter, and more recently observed under elaborate experimental conditions in isolated systems. These experiments require extremely low temperatures or other rigorous conditions to minimize undesired external influences.
In order for scientists to learn more about time crystals and employ their potential in technology, they need to find ways to produce time crystalline states and keep them stable outside the laboratory.
Cutting-edge research led by UC Riverside and published this week in Nature Communications has now observed time crystals in a system that is not isolated from its ambient environment. This major achievement brings scientists one step closer to developing time crystals for use in real-world applications.
To read more, click here.