Dark matter accounts for roughly 85% of the total mass in the Universe, yet its constituents remain unknown. Solving this mystery calls for a wide range of experiments that can detect dark matter constituents with different masses and interactions. Now, Gadi Afek at Yale University and colleagues have proposed a laboratory-based detector that is drastically different from existing experiments [1]. The detector works by measuring the momentum imparted when dark matter particles scatter off optically trapped nanometer-scale spheres. This approach provides an entirely new way to search for light dark matter particles with masses down to fractions of the mass of an electron.

To read more, click here.