Fast radio bursts, or FRBs, are very short, extremely bright extragalactic radio flashes that light up the sky thousands of times a day. The bursts peak at frequencies between 400 MHz and 8 GHz, and they sometimes but not always repeat.

Since the first FRB signal was unearthed from archived observation data 15 years ago, scientists have tried to determine their origin. Thanks to highly sensitive radio telescopes on Earth, several candidate sources have emerged. For example, astronomers determined in 2017 that the well-studied repeating FRB 121102 dwells in a bright star-forming region inside a dwarf galaxy 3 billion light-years away. And two years ago researchers traced FRB 200428 to a distant magnetar, a neutron star with an ultrastrong magnetic field (see Physics Today, January 2021, page 15).

In a paper published in the 18 March Science, researchers analyzed the polarization of active FRBs and offered the first systematic description of the environments in which they reside. The results indicate that the bursts likely originate in young or complex environments such as supernova remnants.

“This paper confirms that FRBs only occur in special places in the universe,” says Ue-Li Pen of the Academia Sinica Institute of Astronomy and Astrophysics in Taiwan, who was not involved with the research. “It’s an important step toward better understanding the immediate environments of those mysterious bursts.”

To read more, click here.