Modern-day batteries have seen dramatic improvements in their capacity and charging speeds. However, with the progressive miniaturization of electronics, researchers have started to explore whether quantumness can be a resource for improving battery technology. Recent work, for instance, has suggested that quantum effects, from coherence to entanglement, could one day be harnessed to build “quantum batteries” whose charging speeds may exceed those of their classical counterparts. So far, however, an exact theoretical estimation of how large this speedup can be was lacking. Now, Ju-Yeon Gyhm of the Institute of Basic Science in the Republic of Korea and colleagues prove that the charging speed of quantum batteries can scale at most quadratically with the number of cells making up the battery [1]. This quadratic scaling implies a potentially large quantum advantage over classical batteries, whose charging speed scales linearly with the number of cells.
The linear scaling of the charging speed in conventional multicellular batteries, such as those used in our cars, is a fundamental limit set by classical charging techniques. The linear scaling stems from the fact that battery cells are typically charged in parallel, meaning that each cell is charged independently of the others. This scaling does not necessarily apply to quantum batteries in which the charging protocol couples multiple cells in the battery (Fig. 1). Recent theoretical studies showed that a faster-than-linear scaling, inconceivable for classical batteries, could be achieved thanks to a quantum entanglement involving multiple cells [2, 3].
To read more, click here.