Your night-mode photos might get a lot crisper thanks to a new device that exploits quantum mechanics to absorb photons more efficiently. Known as a quantum battery, the device stores the energy of the absorbed photons and can be charged simply by shining light on it — great news not just for low-light iPhone photography, but also for solar panels, which could use similar technology to capture the Sun’s energy a lot faster.

In a normal medium for storing energy, like a car battery, the time to charge the battery increases in proportion to the battery’s size. Quantum mechanical effects, however, make it possible to create systems with an energy absorption capacity that increases drastically as they get bigger. This is known as superabsorption, and it enables researchers to create a battery that, somewhat counter-intuitively, charges faster as its size increases.

In the latest study, which is described in Science Advances, James Quach and colleagues at the University of Adelaide, Australia; the Politecnico di Milano and the National Research Center (CNR), Italy; and the Universities of St Andrews, Sheffield and Heriot-Watt in the UK created a quantum battery from molecules of an organic dye, trademarked Lumogen-F Orange. Dye molecules of this type can be modelled as an effective two-level system in which the molecule is most likely to be in one of two states: the ground state with minimal energy, or an excited state with higher energy. If laser light is fired at it at the right wavelength, it may absorb a photon and jump to the excited state.

To read more, click here.