A puzzling process called magnetic reconnection triggers explosive phenomena throughout the universe, creating solar flares and space storms that can take down mobile phone service and electrical power grids. Now scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have detailed a roadmap for untangling a key aspect of this puzzle that could deepen insight into the workings of the cosmos.
Reconnection converts the magnetic field energy to particle eruptions in astrophysical plasmas by snapping apart and explosively reconnecting the magnetic field lines -- a process that occurs within what are called dissipation regions that are often enormously smaller than the regions they impact.
"Plasma doesn't like reconnection," said Hantao Ji, a PPPL physicist and Princeton University professor who is first author of a paper that details the roadmap in Nature Reviews Physics. "However, reconnection does happen when the magnetic field is sufficiently stressed," he said.
"Dissipation scales are tiny whereas astrophysical scales are very large and can extend for millions of miles. Finding a way to bridge these scales through a multiscale mechanism is a key to solving the reconnection puzzle."
To read more, click here.