Two-dimensional magnetic materials have been hailed as building blocks for the next generation of small, fast electronic devices. These materials, made of layers of crystalline sheets just a few atoms thick, gain their unique magnetic properties from the intrinsic compass-needle-like spins of their electrons. The sheets' atomic-scale thinness means that these spins can be manipulated on the finest scales using external electric fields, potentially leading to novel low-energy data storage and information processing systems. But knowing exactly how to design 2D materials with specific magnetic properties that can be precisely manipulated remains a barrier to their application.

Now, as reported in the journal Science Advances, researchers at Lawrence Berkeley National Laboratory (Berkeley Lab), UC Berkeley, Cornell, and Rutgers University have discovered layered 2D materials that can host unique magnetic features that remain stable at room temperature and could thus eventually be used in future everyday devices. Atomic-scale images of the material reveal the precise chemical and structural characteristics that are responsible for these features and their stability.

To read more, click here.