The view from the iconic Millennium Falcon of "Star Wars" during hyperdrive maneuvers would be far different than what science fiction portrays, scientists say.

Rather than the iconic star streaks, we'd see a glow, either due to quantum (subatomic) fluctuations, as a new study proposes, or in previous work, perhaps due to the Doppler effect shifting the visible wavelengths of stars into the X-ray range. Of course, absent a hyperdrive-equipped ship, it's been difficult to prove the 'glow' theory despite the fact that the quantum fluctuation idea dates to the 1970s. 

But now, a new study proposes a way to finally see the quantum phenomenon in action, perhaps allowing scientists to simulate the so-called "Unruh effect" every few hours if all goes well.

"Now at least we know there is a chance in our lifetimes where we might actually see this effect," study co-author Vivishek Sudhir, assistant professor of mechanical engineering at the Massachusetts Institute of Technology, said in a university https://news.mit.edu/2022/physicists-quantum-glow-0426" data-component-tracked="1">statement. 

Sudhir evoked Princess Leia's famous plea to Obi-Wan Kenobi, "You're our only hope," when talking about the difficult work still facing his team. "It's a hard experiment, and there's no guarantee that we'd be able to do it, but this idea is our nearest hope."

The Unruh effect, more formally known as the Fulling-Davies-Unruh effect, states that a body moving swiftly through the vacuum of space should feel warm radiation as a result of the acceleration. That radiation would come from quantum interactions and fluctuations in space, according to the statement. But to see this effect at the atomic level, an atom would have to accelerate to the speed of light in less than a millionth of a second.

To read more, click here.