When atoms interact with each other, they behave as a whole rather than individual entities. That can give rise to synchronized responses to inputs, a phenomenon that, if properly understood and controlled, may prove useful for developing light sources, building sensors that can take ultraprecise measurements, and understanding dissipation in quantum computers.

But can you tell when atoms in a group are synced up? In new work in Nature Communications, Columbia physicist Ana Asenjo-Garcia and her postdoc Stuart Masson show how a phenomenon called a superradiant burst can indicate collective behavior among arrays of atoms, solving what's been a decades-old problem for the field of quantum optics.

To read more, click here.