Quantum computers promise to revolutionize science by enabling computations that were once thought impossible. But for quantum computers to become an everyday reality, there is a long way to go with many challenging tests to pass.
One of the tests involves using quantum computers to simulate the properties of materials for next-generation quantum technologies.
In a new study from the U.S. Department of Energy's (DOE) Argonne National Laboratory and the University of Chicago, researchers performed quantum simulations of spin defects, which are specific impurities in materials that could offer a promising basis for new quantum technologies. The study improved the accuracy of calculations on quantum computers by correcting for noise introduced by quantum hardware.
The research was conducted as part of the Midwest Integrated Center for Computational Materials (MICCoM), a DOE computational materials science program headquartered at Argonne, as well as Q-NEXT, a DOE National Quantum Information Science Research Center.
To read more, click here.