Plasmas of charged particles—electrons or ions—can act as mirrors that reflect high-intensity light without being damaged. This property has been exploited to build plasma mirrors and other optical components for high-power lasers such as those used at the National Ignition Facility. Now, Vadim Munirov at the University of California, Berkeley, and colleagues have theorized a new plasma-based grating concept [1]. In their design, lasers produce a plasma-density modulation that is quasiperiodic in both space and time—a space-time “quasicrystal.” This traveling grating could be used to diffract laser pulses or to accelerate charged particles that “surf” on the grating.
To read more, click here.