Optical parametric oscillators (OPOs) are indispensable in quantum optics, generating entangled photons for quantum communication and creating “squeezed” photon states for precision sensing (see Focus: Squeezing More from Gravitational-Wave Detectors). Now, researchers have demonstrated a device that does the same with phonons [1]. As well as paving the way for producing entangled phonon pairs and squeezed phonon states, the new optomechanical parametric oscillator could be used for superresolution microscopy and for high-frequency modulation of light sources.

To read more, click here.