Sensors are a constant feature of our everyday lives. Although they often go unperceived, sensors provide critical information essential to modern healthcare, security, and environmental monitoring. Modern cars alone contain over 100 sensors and this number will only increase.
Quantum sensing is poised to revolutionise today's sensors, significantly boosting the performance they can achieve. More precise, faster, and reliable measurements of physical quantities can have a transformative effect on every area of science and technology, including our daily lives.
However, the majority of quantum sensing schemes rely on special entangled or squeezed states of light or matter that are hard to generate and detect. This is a major obstacle to harnessing the full power of quantum-limited sensors and deploying them in real-world scenarios.
In a paper published today, a team of physicists at the Universities of Bristol, Bath and Warwick have shown it is possible to perform high precision measurements of important physical properties without the need for sophisticated quantum states of light and detection schemes.
To read more, click here.