Life (as we know it) is based on carbon. Despite its ubiquity, this important element still holds plenty of secrets, on earth and in the heavens above us. For example, astrophysicists like Columbia's Daniel Wolf Savin who study interstellar clouds want to understand how the chemicals, including carbon, swirling within these nebulous aggregations of gas and dust form the stars and planets that dot our universe and give rise to organic life.
These interstellar clouds are cold to an extreme that's challenging to mimic in a lab, but Columbia has experts in ultracold science. At a Physics Department retreat several years ago at Columbia's Nevis Laboratory, astrophysicist Savin met quantum physicist Sebastian Will. Will's lab specializes in chilling atoms and molecules to their absolute limit with the help of lasers. Laser cooling techniques have been advancing rapidly in recent years, but physicists' typical choices of atoms and molecules don't turn up too often in everyday life. Savin wanted to know: Could you cool carbon molecules?
The answer, at least theoretically, is yes, according to a study that physics graduate student Niccolò Bigagli, Savin, and Will recently published in Physical Review A.
To read more, click here.