The National Ignition Facility (NIF) uses the world’s largest laser to heat and compress a small capsule containing hydrogen fuel and thereby induce nuclear fusion reactions in the fuel (Fig. 1), an approach known as inertial confinement fusion [1]. In early 2021, a team at NIF achieved a major milestone by showing that they could produce a burning plasma [2], a state in which the dominant source of fuel heating is self-heating due to fusion reactions—rather than external heating by the laser pulses. Today, NIF reports that they have reached another milestone in fusion research: they produced a plasma in which self-heating locally surpasses not only the external heating but also all loss mechanisms, fulfilling the so-called Lawson criterion for fusion ignition [3–5]. The result brings the scheme tantalizingly close to a holy grail of the field—getting fusion to produce a net energy greater than that contained in the driving laser pulses.
To read more, click here.