Scientists at Queen Mary University of London have made two discoveries about the behavior of "supercritical matter"—matter at the critical point where the differences between liquids and gases seemingly disappear.
While the behavior of matter at reasonably low temperature and pressure was well understood, the picture of matter at high temperature and pressure was blurred. Above the critical point, differences between liquids and gases seemingly disappear, and the supercritical matter was thought to become hot, dense and homogeneous.
The researchers believed there was new physics yet to be uncovered about this matter at the supercritical state.
By applying two parameters—the heat capacity and the length over which waves can propagate in the system, they made two key discoveries. First, they found that there is a fixed inversion point between the two where matter changes its physical properties—from liquid-like to gas-like. They also found that this inversion point is remarkably close in all systems studied, telling us that the supercritical matter is intriguingly simple and amenable to new understanding.
To read more, click here.