In a series of experiments on lanthanum superhydride with impurities, researchers from Skoltech, Lebedev Physical Institute of RAS and their colleagues from the United States, Germany and Japan, have established the mechanism behind the highest-temperature superconductivity in polyhydrides observed to date. Reported in Advanced Materials, the discovery paves the way for future studies pursuing materials that conduct electricity with zero resistance at or close to room temperature. Those would come in handy for superconducting electronics and quantum computers, maglev trains, MRI machines, particle accelerators, and perhaps even nuclear fission reactors and lossless power lines, if you're into that kind of thing.

If not the Holy Grail of materials science, near superconductors are certainly among the most sought-after materials with technological applications. If discovered, such a material would enable monster electromagnets that could be used in fundamental research instruments, such as ultraprecise magnetic sensors and that would make the Large Hadron Collider seem puny, as well as in medical tech (better MRI scanners), magnetic levitation trains, miniature motors and generators, and extended battery life gadgets. Among the more futuristic applications are long-distance power transmission lines that would deliver electricity nearly without losses.

To read more, click here.