After a year of seemingly endless Zoom meetings, Slack chats and e-mails, nearly 800 particle physicists descended on the University of Washington to share their scientific dreams and nightmares in person. For 10 days at the end of July, whether masked inside conference rooms or sipping coffee beneath unusually sunny Seattle skies, they attempted to build a unified vision of their field’s future.

The story of 20th century particle physics is chronicled in the pantheon of elementary particles dubbed the Standard Model: quarks bound tight by gluons to make atomic nuclei; negatively charged electrons and their heavier counterparts, muons and taus; photons, the particles of light; heavy W and Z bosons, with their subtle influence; and evasive, lightweight neutrinos. Particles in the Standard Model are divided into fermions, the building blocks of matter, and bosons, forces that organize the matter. Perhaps ironically, searching at the smallest of scales has required experiments of increasing complexity and size. To find new particles, physicists have sifted for needles in haystacks of data produced by slamming known types of particles together at higher and higher energies. In 2012 the discovery of the Higgs boson at the Large Hadron Collider (LHC) at CERN near Geneva was accomplished by more than 5,000 scientists analyzing petabytes of data from detectors weighing thousands of tons at the biggest machine in the world.

Yet the triumph of the Higgs discovery—arguably the crowning achievement of the Standard Model—has been shadowed by worries that particle physicists are now stuck in a “nightmare scenario” with no clear path forward. Physicists have long believed the Standard Model’s pantheon should be bigger to account for phenomena such as dark matter and gravity. Many theories proposed these new particles would be within the LHC’s reach, but so far searches have come up empty—a nightmare for particle physicists.

To read more, click here.