If you're going to break a rule with style, make sure everybody sees it. That's the goal of engineers at Rice University who hope to improve screens for virtual reality, 3D displays and optical technologies in general.
Gururaj Naik, an associate professor of electrical and computer engineering at Rice's George R. Brown School of Engineering, and Applied Physics Graduate Program alumna Chloe Doiron found a way to manipulate light at the nanoscale that breaks the Moss rule, which describes a trade-off between a material's optical absorption and how it refracts light.
Apparently, it's more like a guideline than an actual rule, because a number of "super-Mossian" semiconductors do exist. Fool's gold, aka iron pyrite, is one of them.
For their study in Advanced Optical Materials, Naik, Doiron and co-author Jacob Khurgin, a professor of electrical and computer engineering at Johns Hopkins University, find iron pyrite works particularly well as a nanophotonic material and could lead to better and thinner displays for wearable devices.
More important is that they've established a method for finding materials that surpass the Moss rule and offer useful light-handling properties for displays and sensing applications.
To read more, click here.