November 2021, Clara Aldegunde on Level 2 of the Central Library, Imperial College London, UK
 

I’m at the library, deeply engrossed in some research for my first article on quantum physics, when my phone rings and I snap back to reality. My parents are calling, and I hastily leave the silent study area to speak to them.

After the usual greetings and gossip, I can’t help but share with them what I’ve been learning. Some theorists, I’ve learned, think that quantum interactions are responsible for creating the space–time fabric of our universe. Using simplified models and mathematical tools, these researchers hope to explain how both space and time emerged. Although further investigation is vital to extrapolate this theory to a universe with the same characteristics as ours, this could be a promising first step towards quantum gravity and the long-sought “Theory of Everything”. 

“Isn’t that exciting?” I ask my parents, who listen dumbfounded on the other end of the line. Carried away by the will to make them understand the incredibly deep implications of this concept, I find I have to begin by explaining the basics of quantum mechanics. 

To truly get to grips with quantum mechanics, we must set aside our more classical mindset. Right now, there are two things I am sure of: I’m in South Kensington, London, standing at rest, explaining quantum mechanics to my family, and they are sitting on a sofa 2197 km away. If we were quantum particles, such as a proton and an electron, none of this would be true. In classical mechanics, we have definite answers when asked the position and momentum of a system at a given time. But cross the boundary from the classical to the quantum realm, and you’ll find, as physicists did in the early 20th century, that these rules break down.

To read more, click here.