From The City College of New York's Center for Discovery and Innovation and the Physics Department comes news of a new type of magnetic quasiparticle created by coupling light to a stack of ultrathin two-dimensional magnets. This achievement sprouting from a collaboration with the University of Texas at Austin lays the foundation for an emergent strategy to artificially design materials by ensuring their strong interaction with light.

The development is reported in the current issue of Nature Nanotechnology, in a paper entitled "Spin-correlated exciton-polaritons in a van der Waals magnet.

"Implementing our approach with is a promising path towards efficient magneto-optical effects," said CCNY physicist Vinod M. Menon, whose group led the study. "Achieving this goal can enable their use for applications in everyday devices like lasers, or for digital data storage."

To read more, click here.