Since the initial discovery of what has become a rapidly growing family of two-dimensional layered materials — called MXenes — in 2011, Drexel University researchers have made steady progress in understanding the complex chemical composition and structure, as well as the physical and electrochemical properties, of these exceptionally versatile materials. More than a decade later, advanced instruments and a new approach have allowed the team to peer within the atomic layers to better understand the connection between the materials’ form and function.
In a paper recently published in Nature Nanotechnology ("Oxycarbide MXenes and MAX phases identification using monoatomic layer-by-layer analysis with ultralow-energy secondary-ion mass spectrometry"), researchers from Drexel’s College of Engineering and Poland’s Warsaw Institute of Technology and Institute of Microelectronics and Photonics reported a new way to look at the atoms that make up MXenes and their precursor materials, MAX phases, using a technique called secondary ion mass spectrometry.
In doing so, the group discovered atoms in locations where they were not expected and imperfections in the two-dimensional materials that could explain some of their unique physical properties. They also demonstrated the existence of an entirely new subfamily of MXenes, called oxycarbides, which are two-dimensional materials where up to 30% of carbon atoms are replaced by oxygen.
To read more, click here.