Quantum dots are clusters of some 1,000 atoms which act as one large "super-atom." It is possible to accurately design the electronic properties of these dots just by changing their size. However, to create functional devices, a large number of dots have to be combined into a new material. During this process, the properties of the dots are often lost.

Now, a team led by University of Groningen professor of Photophysics and Optoelectronics, Maria Antonietta Loi, has succeeded in making a highly conductive optoelectronic metamaterial through . The metamaterial is described in the journal Advanced Materials.

To read more, click here.