Researchers developed a new technology to see very small molecules in 6D. Inspired by the James Webb Space Telescope (JWST) design, the latest technology uses mirror segments to sort and gather light on a microscopic scale and take three-dimensional images of molecules both in position and orientation.

From the universe to the tiniest subatomic particle, objects in our world exist in a mind-boggling array of sizes. With microscopes, we can look directly at some of the objects and processes that are too small to be seen with the naked eye.

This has allowed us to make great leaps in our scientific understanding. However, biological molecules are so tiny that only our very best electron microscopes can give us fuzzy, grainy images. That's why precise imaging relies more heavily on computer processing to sort out orientation after an image has been captured.

"Think of creating a color picture when all you have are gray-scale camera sensors. You could try to recreate the color using a computational tool, or you can directly measure it using a color sensor, which uses various absorbing color filters on top of different pixels to detect colors," said Matthew Lew, associate professor of electrical and systems engineering at the McKelvey School of Engineering at Washington University in St. Louis.

To read more, click here.