On December 5, scientists at the Lawrence Livermore National Laboratory took the first step toward harnessing a new abundant, clean form of energy. For the first time, they harnessed extra power from nuclear fusion, a reaction in which hydrogen is heated up to extremely high temperatures and converted into helium — the process that keeps stars like the Sun glowing above us.

To replicate this phenomenon on Earth, the team blasted 192 laser beams at an eraser-sized gold cylinder and triggered an implosion that released 3.15 MJ of energy. Their successful experiment marked the first time that researchers have been able to create excess energy through nuclear fusion, or, a simpler way to look at it: get more juice than they put in.

But hold your horses: The lab triumph is just a small step toward nuclear fusion power plants. It took a humongous amount of energy (300 MJ) to send 2 MJ out of the laser and onto the fuel pellet containing the hydrogen isotopes deuterium and tritium.

And the experiment relied on decades-old technology. Now, it’s up to researchers to recreate this process with newer devices and scale things up. To jumpstart this investigative work, the White House aims to have a plant up and running within the coming decade. It isn’t clear, though, whether this lofty goal will succeed.

To parse through what the future of fusion holds, Inverse spoke with Stephanie Hansen, a physicist and senior scientist at Sandia National Labs who studies laser-powered fusion.

To read more, click here.