Researchers have finally succeeded in building a long-sought nanoparticle structure, opening the door to new materials with special properties.

Alex Travesset does not have a sparkling research lab stocked with the most cutting-edge instruments for probing new nanomaterials and measuring their unique properties.

Instead of using traditional laboratory instruments, Alex Travesset, a professor of physics and astronomy at Iowa State University and an affiliate of the U.S. Department of Energy’s Ames National Laboratory, relies on computer models, equations, and figures to understand the behavior of new nanomaterials.

 When he joins a research project, he often contributes detailed analyses of nanoparticle assembly using these computational methods. Travesset’s expertise in theoretical physics allows him to provide valuable insights and understanding of the complex processes at work within nanomaterials.
 

Case in point: Travesset’s “Chiral Tetrahedra” calculations and illustrations that are part of a research paper just published by the journal Nature. Those calculations show how controlled evaporation of a solution containing tetrahedron-shaped gold nanoparticles on a solid silicon substrate can assemble into a pinwheel-shaped, two-layered structure.

It turns out the nanostructure is chiral, meaning it’s not identical to its mirror image. (The classic example is a hand and its reflection. The thumbs end up on opposite sides and so one hand can’t be superimposed on the other. That’s chirality.)

Travesset said producing a stable nanostructure with chiral properties is a big deal.

To read more, click here.