Biologists have long known that new protein-coding genes can arise through the duplication and modification of existing ones. But some protein genes can also arise from stretches of the genome that once encoded aimless strands of RNA instead. How new protein genes surface this way has been a mystery, however.
Now, a study identifies mutations that transform seemingly useless DNA sequences into potential genes by endowing their encoded RNA with the skill to escape the cell nucleus—a critical step toward becoming translated into a protein. The study’s authors highlight 74 human protein genes that appear to have arisen in this de novo way—more than half of which emerged after the human lineage branched off from chimpanzees. Some of these newcomer genes may have played a role in the evolution of our relatively large and complex brains. When added to mice, one made the rodent brains grow bigger and more humanlike, the authors report this week in Nature "Ecology & Evolution.
“This work is a big advance,” says Anne-Ruxandra Carvunis, an evolutionary biologist at the University of Pittsburgh, who was not involved with the research. It “suggests that de novo gene birth may have played a role in human brain evolution.”
To read more, click here.