Ferroelectric semiconductors are contenders for bridging mainstream computing with next generation architectures, and now a team at the University of Michigan has made them just five nanometers thick—a span of just 50 or so atoms.

 This paves the way for integrating ferroelectric technologies with conventional components used in computers and smartphones, expanding artificial intelligence and sensing capabilities. They could also enable batteryless devices, crucial for the Internet of Things (IoT) that powers smart homes, identifies problems with industrial systems and alerts people to safety risks, among other things.
 

The study in Applied Physics Letters was selected as an editor's pick.

"This will allow the realization of ultra-efficient, ultra-low-power, fully integrated devices with mainstream semiconductors," said Zetian Mi, U-M professor of electrical and computer engineering and co-corresponding author of the study. "This will be very important for future AI and IoT-related devices."

To read more, click here.