Researchers at the University of North Carolina at Chapel Hill Department of Chemistry have engineered silicon nanowires that can convert sunlight into electricity by splitting water into oxygen and hydrogen gas, a greener alternative to fossil fuels.

Fifty years ago, scientists first demonstrated that liquid water can be split into oxygen and using electricity produced by illuminating a semiconductor electrode. Although hydrogen generated using is a promising form of clean energy, low efficiencies and have hindered the introduction of commercial solar-powered hydrogen plants.

An economic feasibility analysis suggests that using a slurry of electrodes made from nanoparticles instead of a rigid solar panel design could substantially lower costs, making solar-produced hydrogen competitive with fossil fuels. However, most existing particle-based light-activated catalysts, also referred to as photocatalysts, can absorb only , limiting their energy-conversion efficiency under solar illumination.

James Cahoon, Ph.D., Hyde Family Foundation Professor of Chemistry in UNC-Chapel Hill's College of Arts and Sciences, and his colleagues in the department have been working on the chemical synthesis of semiconductor nanomaterials with unique physical properties that can enable a range of technologies, from solar cells to solid-state memory. Cahoon serves as the corresponding author of the findings published Feb. 9 in Nature.

To read more, click here.