Quantum computers require a method for determining the states of their computational units, or qubits. Ideally, qubit readout should be fast, accurate, and performed using hardware that facilitates high qubit connectivity. This hardware should also be easy to integrate into the computing architecture. Now two independent teams show how these criteria can be met in the case of a promising type of quantum computer that uses electron spins in silicon as its qubits [1, 2]. The groups’ demonstrations could bring large-scale versions of these machines closer to reality.

To read more, click here.