Novel, ultrathin nanomaterials exhibit remarkable properties. If you stack individual atomically thin layers of crystals in a vertical assembly, for example, fascinating physical effects can occur. For instance, bilayers of the wonder material graphene twisted by the magic angle of 1.1 degrees may exhibit superconductivity. And researchers are also focusing their attention on bilayer semiconducting heterostructures made of so-called transition metal dichalcogenides, which are held together weakly by van der Waals forces.
The research group led by Alexander Högele investigates such novel heterostructures, which do not occur in nature. "The combination of materials, the number of layers, and their relative orientation give rise to a wide variety of novel phenomena," says the LMU physicist.
To read more, click here.