What happens if dark-matter particles are produced inside a jet of Standard-Model particles? This leads to a novel detector signature known as semi-visible jets! The ATLAS Collaboration has come up with the first search for semi-visible jets, looking for them in a general production mode where two protons interact by exchanging an intermediate particle, which is then converted into two jets.
The elusive nature of dark matter remains one of the biggest mysteries in particle physics. Most of the searches have so far looked for events where a “weakly interacting” dark-matter particle is produced alongside a known Standard-Model particle. Since the dark-matter particle cannot be seen by the ATLAS detector, researchers look for an imbalance of transverse momentum (or “missing energy”).
However, some theoretical models predict a “strongly interacting” dark sector, with dark quarks and gluons as replicas of Standard-Model quarks and gluons. Semi-visible jets would arise when dark quarks decay partially to Standard-Model quarks and partially to stable dark hadrons (the “invisible fraction”). Since they are produced in pairs, typically along with additional Standard-Model jets, the missing energy arises when all the jets are not fully balanced. The direction of the missing energy is often aligned with one of the semi-visible jets, as can be seen in the event display above.
This makes searches for semi-visible jets very challenging, as this event signature can also arise due to mis-measured jets in the detector. For their new search, physicists had to make sure all such effects had been accounted for. To do this, they focused on a few observables: the uniqueness of the alignment and magnitude of transverse momentum, and the angle between the semi-visible jets. They also investigated scenarios with different invisible fractions and mediating particle masses.
To read more, click here.