Scientists at Lawrence Livermore National Laboratory successfully used the world’s most powerful laser to simulate and study pressure-driven ionization, a process vital to understanding the structure of planets and stars. The research revealed unexpected properties of extremely compressed matter and has significant implications for both astrophysics and nuclear fusion research.
Scientists have conducted laboratory experiments at Lawrence Livermore National Laboratory (LLNL) that provide new insights on the complex process of pressure-driven ionization in giant planets and stars. Their research, published on May 24 in Nature, unveils the material properties and behavior of matter under extreme compression, offering important implications for astrophysics and nuclear fusion research.
“If you can recreate conditions that occur in a stellar object, then you can actually find out what’s going on inside of it,” said collaborator Siegfried Glenzer, director of the High Energy Density Division at the Department of Energy’s SLAC National Accelerator Laboratory. “It’s like putting a thermometer into the star and measuring how hot it is and what these conditions do to the atoms inside the material. It can teach us new ways to manipulate matter for fusion energy sources.”
To read more, click here.