One of the most high-profile mysteries in physics today is what scientists refer to as the "Strong CP Problem." Stemming from the puzzling phenomenon that neutrons do not interact with electric fields despite being made up of quarks—smaller, fundamental particles that carry electric charges—the Strong CP Problem puts into question the Standard Model of physics, or the set of theories scientists have been using to explain the laws of nature for years.
A team led by University of Minnesota Twin Cities theoretical physicists has discovered a new way to search for axions, hypothetical particles that could help solve this mystery. Working in collaboration with experimental researchers at the Fermilab National Accelerator Laboratory, the physicists' new strategy opens up previously unexplored opportunities to detect axions in particle collider experiments.
The researchers' paper is published and featured as the Editor's suggestion in Physical Review Letters.
To read more, click here.