An elastocaloric cooling system that absorbs heat as tension is released in bundles of metal tubes has been developed by a team of researchers in the US and China. Led by Ichiro Takeuchi at the University of Maryland, the team’s scheme achieved a cooling performance on par with other caloric materials, and could pave the way for commercial use in the not-too-distant future.
Conventional refrigeration systems usually employ gases that have powerful greenhouse effects if released into the atmosphere. As a result, researchers are developing alternative solid-state refrigeration technologies based on caloric materials. These materials undergo temperature changes when exposed to external magnetic or electric fields, or in response to mechanical stress or pressure. As well as avoiding harmful chemicals, cooling systems based on caloric materials could also be more energy efficient than existing refrigerators.
So far, this research has focused mainly on magnetocaloric materials – but more recently, elastocaloric materials have emerged as even more promising candidates for commercial caloric cooling. Among these materials is the highly elastic and easily manufactured alloy nickel titanium (NiTi).
To read more, click here.