We interact with bits and bytes everyday -- whether that's through sending a text message or receiving an email.
There's also quantum bits, or qubits, that have critical differences from common bits and bytes. These photons -- particles of light -- can carry quantum information and offer exceptional capabilities that can't be achieved any other way. Unlike binary computing, where bits can only represent a 0 or 1, qubit behavior exists in the realm of quantum mechanics. Through "superpositioning," a qubit can represent a 0, a 1, or any proportion between. This vastly increases a quantum computer's processing speed compared to today's computers.
"Learning about the capabilities of qubits has been a driving force for the emerging field of quantum technologies, opening up new and unexplored applications like quantum communication, computing and sensing," said Hong Koo Kim, Professor of Electrical and Computer Engineering at the University of Pittsburgh Swanson School of Engineering.
Quantum technologies are important for a number of fields, like for banks protecting financial information or providing researchers with the speed needed to mimic all aspects of chemistry. And through quantum "entanglement," qubits could "communicate" across vast distances as a single system. Kim and his graduate student, Yu Shi, made a discovery that may help quantum technology take a quantum leap.
To read more, click here.