Researchers from Cornell University have identified a new state of matter in candidate topological superconductors, a discovery that may have far-reaching implications for both condensed matter physics and the fields of quantum computing and spintronics.
Researchers at the Macroscopic Quantum Matter Group at Cornell have discovered and visualized a crystalline yet superconducting state in a new and unusual superconductor, Uranium Ditelluride (UTe2), using one of the world’s most powerful millikelvin Scanned Josephson Tunnelling Microscopes (SJTM). This “spin-triplet electron-pair crystal” is a previously unknown state of topological quantum matter.
The findings were recently published in the journal Nature. Qiangqiang Gu, a postdoctoral researcher working in the lab of physicist J.C. Séamus Davis, the James Gilbert White Distinguished Professor Emeritus in the College of Arts and Sciences, co-led the research with Joe Carroll of University College Cork and Shuqiu Wang of Oxford University.
To read more, click here.