Capturing blur-free images of fast movements like falling water droplets or molecular interactions requires expensive ultrafast cameras that acquire millions of images per second. In a new paper, researchers report a camera that could offer a much less expensive way to achieve ultrafast imaging for a wide range of applications such as real-time monitoring of drug delivery or high-speed lidar systems for autonomous driving.

"Our uses a completely new method to achieve high-speed imaging," said Jinyang Liang from the Institut national de la recherche scientifique (INRS) in Canada. "It has an imaging speed and similar to commercial high-speed cameras but uses off-the-shelf components that would likely cost less than a tenth of today's ultrafast cameras, which can start at close to $100,000."

In a paper, titled "Diffraction-gated real-time ultrahigh-speed mapping photography" appearing in Optica, Liang together with collaborators from Concordia University in Canada and Meta Platforms Inc. show that their new diffraction-gated ultrahigh-speed mapping (DRUM) camera can capture a dynamic event in a single exposure at 4.8 million frames per second. They demonstrate this capability by imaging the fast dynamics of femtosecond laser pulses interacting with liquid and in biological samples.

To read more, click here.